Study on bonding strength, chloride penetration resistance, and microstructure of adhesive interface for the old concrete repaired by alkali activated materials

Author:

Cao Diansheng1,Zhang Bo2ORCID

Affiliation:

1. Department of Information Science and Engineering, Ocean University of China 1 , Qingdao 266100, China

2. Emergency Science Research Institute, Chinese Institute of Coal Science 2 , Beijing 100013, China

Abstract

This work studied the effect of alkali activated slag-fly ash (AASFA) material on the adhesive interface mechanical properties and chloride permeability of repaired ordinary concrete. The splitting tensile strength and chloride diffusion coefficient of the bonding surface repaired using three methods were compared: direct repair of ordinary concrete (method I), surface agents of cementitious slurry and alkaline activated slag-fly ash slurry followed by repair with ordinary concrete (method II), and direct repair with alkaline activated slag-fly ash concrete (method III). The microstructure including pore size distribution and micro-morphology of adhesive interface were investigated systematically. The results showed that the effect of direct repairing with AASFA concrete was the best among the three repairing methods. In this case, the reasonable modulus of the alkali activator was 1.3, and the adoptable slag content was 50%. The splitting tensile strength of the new-to-old concrete prepared by method II increased first with the increase in slag content and then decreased. There was a good linear correlation between the pore tortuosity and the chloride diffusion coefficient, and the chloride penetration resistance was mainly affected by pore tortuosity. For AASFA as the repairing material, the bonding strength of new-to-old concrete was not only dominated by pore structure but also affected by chemical reaction. The large amount of C-(A)-S-H gel generated at the adhesive interface not only filled the pores of the bonding surface but also provided additional bonding strength.

Funder

National Natural Science Foundation of China

Key Research and Development Plan of Shandong Provience

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3