A home-made portable device based on Arduino Uno for pulsed magnetic resonance of NV centers in diamond

Author:

Mariani G.1ORCID,Umemoto A.1,Nomura S.1ORCID

Affiliation:

1. Division of Physics, University of Tsukuba, Tennodai 1-1-1, Ibaraki 305-8571, Japan

Abstract

We describe the realization of a homemade and portable setup to perform experiments of pulsed magnetic resonance of nitrogen-vacancy (NV) centers in diamonds. The system is fully implemented by using an Arduino Uno board equipped with an AVR microcontroller that is used as a transistor-transistor logic pulse sequencer to drive precise laser and microwave pulses with a resolution of 62.5 ns. The equipment is assembled with low-cost modules on a printed circuit board and placed in a compact box with a volume of 20 × 40 × 10 cm3. The detection system is based on a switched integrator and a photodiode in the vicinity of a diamond substrate and read by oversampling the analog-to-digital converter of Arduino Uno. We characterize a CVD diamond sample by performing the pulsed optically detected magnetic resonance and we show the possibility to perform a coherent manipulation of the electron spin of NV centers by driving Rabi oscillations up to 6 MHz with microwave powers within 1 W. We demonstrate different pulse sequences to study electron spin relaxation and dephasing. Finally, we propose additional modules and an antenna to perform the multifrequency manipulation of the electron spin by microwave and radio-frequency pulses. Compared to the previous studies, our system results in a low-cost setup with significantly reduced complexity, which finds application as a learning module for science education and enables a wider audience to access the magnetic resonance in diamond.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3