An examination of phonon–inelastic molecule–metal scattering using reduced density matrix and stochastic wave packet methods

Author:

Jackson Bret1ORCID

Affiliation:

1. Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA

Abstract

We explore the application of reduced density matrix-based approaches to molecules interacting with the lattice vibrations of metals, an interaction responsible for the temperature dependence of many of the fundamental steps of catalysis. We avoid the use of simple models for the bath and instead use density functional theory to compute all molecule–phonon interactions and the properties of the lattice phonons, for methane scattering from Ir(111). We find that while the large metal mass leads to long bath correlation times, these are not significantly longer than the time over which the reduced density matrix changes due to interactions with the bath. We show that the neglect of memory is reasonable and the use of the Redfield equation is justified. We also show how the commonly used rotating wave approximation is far too severe for this scattering problem. A less restrictive approximation that is nearly exact for our system gives an equation of motion in the Lindblad form. As a result, the Monte Carlo wave packet methods can be used to describe gas–phonon scattering, guaranteeing positivity, and with all couplings derived from first-principles.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3