Hydration structure and dynamics of phosphoric acid and its anions—Ultrafast 2D-IR spectroscopy and ab initio molecular dynamics simulations

Author:

Kundu Achintya1ORCID,Fingerhut Benjamin P.2ORCID,Elsaesser Thomas1ORCID

Affiliation:

1. Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie 1 , Berlin 12489, Germany

2. Department Chemie and Centre for NanoScience, Ludwig-Maximilians-Universität München 2 , München 81377, Germany

Abstract

The hydration shells of phosphate ions and phosphate groups of nucleotides and phospholipid membranes display markedly different structures and hydrogen-bond strengths. Understanding phosphate hydration requires insight into the spatial arrangements of water molecules around phosphates and in thermally activated structure fluctuations on ultrafast time scales. Femtosecond two-dimensional infrared spectroscopy of phosphate vibrations, particularly asymmetric stretching vibrations between 1000 and 1200 cm−1, and ab initio molecular dynamics (AIMD) simulations are combined to map and characterize dynamic local hydration structures and phosphate–water interactions. Phosphoric acid H3PO4 and its anions H2PO4−, HPO42−, and PO43− are studied in aqueous environments of different pH value. The hydration shells of phosphates providing OH donor groups in hydrogen bonds with the first water layer undergo ultrafast structural fluctuations, which induce a pronounced spectral diffusion of vibrational excitations on a sub-300 fs time scale. With a decreasing number of phosphate OH groups, the hydration shell becomes more ordered and rigid. The 2D-IR line shapes observed with hydrated PO43− ions display a pronounced inhomogeneous broadening, reflecting a distribution of hydration geometries without fast equilibration. The AIMD simulations allow for an in-depth characterization of the hydration geometries with different numbers of water molecules in the first hydration layer and different correlation functions of the fluctuating electric field that the water environment exerts on the vibrational phosphate oscillators.

Funder

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3