Realization of a magnonic analog adder with frequency-division multiplexing

Author:

Schulz Frank1ORCID,Groß Felix1ORCID,Förster Johannes1ORCID,Mayr Sina23ORCID,Weigand Markus4ORCID,Goering Eberhard1,Gräfe Joachim1ORCID,Schütz Gisela1,Wintz Sebastian1ORCID

Affiliation:

1. Max-Planck-Institut für Intelligente Systeme 1 , 70569 Stuttgart, Germany

2. Paul-Scherrer-Institut 2 , 5232 Villigen, Switzerland

3. Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich 3 , 8093 Zurich, Switzerland

4. Helmholtz-Zentrum Berlin für Materialien und Energie 4 , 12489 Berlin, Germany

Abstract

Being able to accurately control the interaction of spin waves is a crucial challenge for magnonics in order to offer an alternative wave-based computing scheme for certain technological applications. Especially in neural networks and neuromorphic computing, wave-based approaches can offer significant advantages over traditional CMOS-based binary computing schemes with regard to performance and power consumption. In this work, we demonstrate precise modulation of phase- and amplitude-sensitive interference of coherent spin waves in a yttrium–iron–garnet based magnonic analog adder device, while also showing the feasibility of frequency-division multiplexing. Using time-resolved scanning transmission x-ray microscopy, the interference was directly observed, giving an important proof of concept for this kind of analog computing device and its underlying working principle. This constitutes a step toward wave-based analog computing using magnons as an information carrier.

Funder

Swiss National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference46 articles.

1. Hardware for machine learning: Challenges and opportunities,2017

2. Roadmap on emerging hardware and technology for machine learning;Nanotechnology,2020

3. A compact memristor-based dynamic synapse for spiking neural networks;IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,2016

4. Emerging artificial synaptic devices for neuromorphic computing;Adv. Mater. Technol.,2019

5. The perceptron: A probabilistic model for information storage and organization in the brain;Psychol. Rev.,1958

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3