Fabrication of graphene field effect transistors on complex non-planar surfaces

Author:

Holicky M.1ORCID,Fenech-Salerno B.1ORCID,Cass A. E. G.1ORCID,Torrisi F.123ORCID

Affiliation:

1. Department of Chemistry, Molecular Sciences Research Hub & Centre for Processable Electronics, Imperial College London 1 , 82 Wood Lane, London W12 0BZ, United Kingdom

2. Dipartimento di Fisica e Astronomia, Università di Catania 2 , Catania, Italy and , Via S. Sofia 64, 95123 Catania, Italy

3. CNR-IMM (Catania Universita') 2 , Catania, Italy and , Via S. Sofia 64, 95123 Catania, Italy

Abstract

Graphene field effect transistors (GFETs) are promising devices for biochemical sensing. Integrating GFETs onto complex non-planar surfaces could uncap their potential in emerging areas of wearable electronics, such as smart contact lenses and microneedle sensing. However, the fabrication of GFETs on non-planar surfaces is challenging using conventional lithography approaches. Here, we develop a combined spray-coating and photolithography setup for the scalable fabrication of GFETs on non-planar surfaces and demonstrate their application as integrated GFETs on microneedles. We optimize the setup to pattern ∼ 67 μm long GFET channels across the microneedle tips. Graphene is deposited between photo-patterned electrodes by spray-coating a liquid-phase exfoliated graphene ink while monitoring the channel resistance to achieve the required conductivity. The formation of the GFET channels is confirmed by SEM and EDX mapping, and the GFETs are shown to modulate in solution. This demonstrates an approach for manufacturing graphene electronic devices on complex non-planar surfaces like microneedles and opens possibilities for wearable GFET microneedle sensors for real-time monitoring of biomarkers.

Funder

Ministero della Ricerca

European Union

Engineering and Physical Sciences Research Council

Imperial College London and UKRI

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3