Central pattern generator based on self-sustained oscillator coupled to a chain of oscillatory circuits

Author:

Kurkin Semen A.12ORCID,Kulminskiy Danil D.34ORCID,Ponomarenko Vladimir I.4ORCID,Prokhorov Mikhail D.4ORCID,Astakhov Sergey V.5ORCID,Hramov Alexander E.124ORCID

Affiliation:

1. Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russia

2. Innopolis University, Kazan 420500, Russia

3. Sirius University of Science and Technology, Sochi 354340, Russia

4. Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov 410019, Russia

5. Moscow State University, Moscow 119991, Russia

Abstract

We have proposed and studied both numerically and experimentally a multistable system based on a self-sustained Van der Pol oscillator coupled to passive oscillatory circuits. The number of passive oscillators determines the number of multistable oscillatory regimes coexisting in the proposed system. It is shown that our system can be used in robotics applications as a simple model for a central pattern generator (CPG). In this case, the amplitude and phase relations between the active and passive oscillators control a gait, which can be adjusted by changing the system control parameters. Variation of the active oscillator’s natural frequency leads to hard switching between the regimes characterized by different phase shifts between the oscillators. In contrast, the external forcing can change the frequency and amplitudes of oscillations, preserving the phase shifts. Therefore, the frequency of the external signal can serve as a control parameter of the model regime and realize a feedback in the proposed CPG depending on the environmental conditions. In particular, it allows one to switch the regime and change the velocity of the robot’s gate and tune the gait to the environment. We have also shown that the studied oscillatory regimes in the proposed system are robust and not affected by external noise or fluctuations of the system parameters. Moreover, using the proposed scheme, we simulated the type of bipedal locomotion, including walking and running.

Funder

Ministry of Science and Higher Education of the Russian Federation

State task of SB IRE RAS

Scientific School Support Grant

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3