Affiliation:
1. Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, China
Abstract
The design of all-solid heterogeneous catalysts with frustrated Lewis pairs (FLPs) has attracted much attention recently because of their appealing low dissociation energy for H2 molecules due to which a promotion of hydrogenation reaction is expected. The sterically encumbered Lewis acid (metal site) and base (nitrogen site) in the cavity of single transition metal atom-doped M/C2N sheets make them potential candidates for the design of catalysts with FLPs, while a comprehensive understanding of their intrinsic property and reactivity is still lacking. Calculations show that the complete dissociation of the H2 molecule into two H* states at the N sites requires two steps: heterolytic cleavage of the H2 molecule and the transfer of H* from the metal site to the N site, which are strongly related to the acidity of the metal site. Ni/C2N and Pd/C2N, which outperform the other eight transition metal atom (M) anchored M/C2N candidates, possess low energy barriers for the complete dissociation of H2 molecules, with values of only 0.30 and 0.20 eV, respectively. Furthermore, both Ni/C2N and Pd/C2N catalysts can achieve semi-hydrogenation of C2H2 into C2H4, with overall barriers of 0.81 and 0.75 eV, respectively, which are lower than those reported for many other catalysts. It is speculated that M/C2N catalysts with intrinsic FLPs may also find applications in other important hydrogenation reactions.
Funder
Zhejiang Provincial Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献