Multiple boundary layer suction slots technique for performance improvement of vertical-axis wind turbines: Conceptual design and parametric analysis

Author:

Zhang RuiORCID,Kuang LiminORCID,Tu Yu,Dong Zhikun,Ping Huan,Zhang KaiORCID,Han ZhaolongORCID,Zhou DaiORCID,Bao YanORCID

Abstract

Vertical-axis wind turbines (VAWTs) are gaining attention for urban and offshore applications. However, their development is hindered by suboptimal power performance, primarily attributable to the complex aerodynamic characteristics of the blades. Flow control techniques are expected to regulate the flow on the blade surface and improve blade aerodynamics. In the present study, an effective active flow control technique, multiple boundary layer suction slots (MBLSS), is designed for VAWTs performance improvement. The impact of MBLSS on the aerodynamic performance of VAWTs is examined using high-fidelity computational fluid dynamics simulations. The response surface methodology is employed to identify the relatively optimal configuration of MBLSS. Three key parameters are considered, i.e., number of slots (n), distance between slots (d), and slot length (l), which vary from 2 to 4, 0.025c to 0.125c, and 0.025c to 0.075c, respectively. The results show that MBLSS positively affects the power performance and aerodynamics of VAWTs. Parameter n has the most significant effect on VAWT power performance and the importance of d and l is determined by tip speed ratios (TSRs). Tight and loose slot arrangements are recommended for high and low TSRs, respectively. The relatively optimal configuration (n = 2, d = 0.025c, l = 0.05c) results in a remarkable 31.02% increase in the average net power output of the studied TSRs. The flow control mechanism of MBLSS for VAWT blade boundary layer flow has also been further complemented. MBLSS can prevent the bursting of laminar separation bubbles and avoid the formation of dynamic stall vortices. This increases the blade lift-to-drag ratio and mitigates aerodynamic load fluctuations. The wake profiles of VAWTs with MBLSS are also investigated. This study would add value to the application of active flow control techniques for VAWTs.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission

Innovation Program of Shanghai Municipal Education Commission

Oceanic Interdisciplinary Program of Shanghai Jiao Tong University

Guangdong Basic and Applied Basic Research Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3