Defect behavior during growth of heavily phosphorus doped Czochralski silicon crystals (II): Theoretical study

Author:

Sueoka Koji1ORCID,Narushima Yasuhito2,Torigoe Kazuhisa3ORCID,Nonaka Naoya3ORCID,Koga Koutaro3,Ono Toshiaki3ORCID,Horie Hiroshi3,Hourai Masataka3ORCID

Affiliation:

1. Department of Communication Engineering, Okayama Prefectural University 1 , Soja-Shi, Okayama 719–1197, Japan

2. Product and Technology Division, SUMCO TECHXIV Corporation 2 , Omura-Shi, Nagasaki 856–8555, Japan

3. Production and Technology Division, SUMCO Corporation 3 , Imari-Shi, Saga 849–4256, Japan

Abstract

Recent studies including our own report (I) have revealed that heavily phosphorus (P) doped Czochralski-silicon (HP-Cz-Si) exhibits peculiar defect behaviors during crystal growth. HP-Cz-Si crystals with a low resistivity of around 0.6 mΩ cm (P concentration of 1.3 × 1020 P cm−3) have interstitial-type stacking faults (SFs) and dislocations, which degrade device characteristics. The purpose of this paper is to clarify what causes the defect behavior in HP-Cz-Si through theoretical calculations. The thermal equilibrium concentrations of substitutional P (Ps), interstitial P (Pi), and (Ps)n-vacancy (V) clusters (n = 1−4) were determined by using density functional theory (DFT) calculations. The concentrations of Pi ([Pi]) and (Ps)nV ([(Ps)nV]) balanced with the given Ps concentration ([Ps]) were obtained as a function of the total P concentration ([P]) and the temperature. On the basis of the calculated results those can quantitatively explain our experimental results in the report (I), we propose a defect model that accurately represents HP-Cz-Si crystal growth. The main feature of the model is that the incorporated Pi atoms at the solid/liquid interface around [Pi] = 1017 Pi cm−3 cause the formation of SFs and dislocations during the HP-Cz-Si crystal growth with around [P] = 1020 P cm−3. Furthermore, DFT calculations were performed for Pi segregation on the SF and for the photoelectron spectra of P 1s measured by hard x-ray photoelectron spectroscopy to explain the other experimental results in the report (I).

Funder

Japan Science and Technology Agency

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3