Perturbation treatment of pump–probe laser–molecule interactions: An application to the fluorescence from theS1state of α‐NPO
Author:
Publisher
AIP Publishing
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://aip.scitation.org/doi/pdf/10.1063/1.469650
Reference27 articles.
1. Perturbative treatments of pump–probe laser‐molecule interactions with applications to azulene and trimethylazulene
2. Subpicosecond pump–probe measurements of the electronic relaxation rates of the S1 states of azulene and related compounds in polar and nonpolar solvents
3. Subpicosecond pump–probe measurements of the electronic relaxation rates of the S1 states of azulene and related compounds in polar and nonpolar solvents
4. Subpicosecond pump–probe measurements of the electronic relaxation rates of the S1 states of azulene and related compounds in polar and nonpolar solvents
5. Subpicosecond pump–probe measurements of the electronic relaxation rates of the S1 states of azulene and related compounds in polar and nonpolar solvents
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dependence of two-photon absorption excited fluorescence in dye solutions on the angle between the linear polarizations of two intersecting beams;Applied Physics B: Lasers and Optics;2004-01-01
2. Energy transfer involving higher electronic states: a new direction for molecular logic gates;Chemical Physics Letters;2003-08
3. Dependence of two-photon-absorption-excited fluorescence on the angle between the linear polarizations of two intersecting beams;Applied Physics Letters;2003-06-30
4. Laser frequency- and polarisation-dependent interference effects in two-photon transitions in a dipolar molecule;Journal of Molecular Structure: THEOCHEM;2002-08
5. On the control of the production of hydrogen atom 2s–2p resonance hybrids through the use of competitive one- and two-photon transitions from the ground state;The Journal of Chemical Physics;2000-07-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3