Trapping and detrapping of electrons in a typical DC glow discharge plasma under double layer condition

Author:

Singh Thangjam Rishikanta1ORCID,Kommuguri Sneha Latha1ORCID,Sinha Suraj Kumar1ORCID

Affiliation:

1. Department of Physics, Pondicherry University , Puducherry 605014, India

Abstract

Observation of a dip in plasma density with the rise of ion plasma waves demonstrates the process of detrapping electrons under the double-layer conditions in a DC glow discharge plasma. This study presents an experimental observation of self-excitation and interplay between electron and ion plasma waves when a high positive DC voltage (Vp∼+100 V) is applied to a planar probe immersed in plasma. For lower voltages (Vp∼+5 V), the electron sheath forms on the surface of the probe; however, for sufficiently high applied voltage, plasma could not supply the sufficient number of electrons to shield it from penetrating deep into the plasma. Therefore, the electron-deficient sheath attracts plasma electrons toward the probe, resulting in the excitation of plasma waves and the formation of double layers. Low energy streaming electrons get trapped in the double layers potential step. On ionization of background neutrals, trapped electrons get detrapped. It results in the excitation of ion waves and damping of electron plasma waves. The wavelet analysis of the observed floating potential fluctuations exhibits the interplay between electron and ion plasma waves. The trapping of electrons causes the excitation of electron plasma waves, and detrapping results in the excitation of ion plasma waves as overall electron density dips. It provides new insight into the nonlinear effects of the wave–wave interaction, the onset of Buneman instability, and streaming instability under the double-layer condition.

Publisher

AIP Publishing

Reference44 articles.

1. Interaction of biased electrodes and plasmas: Sheaths, double layers, and fireballs;Plasma Sources Sci. Technol.,2020

2. Size dependent transitions induced by an electron collecting electrode near the plasma potential,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3