Electrical conductivity of copper in the low temperature region of warm dense matter

Author:

Park Sungbin1ORCID,Chi Hsiao-Chien1ORCID,Lee Hakmin1ORCID,Cho Jongweon2ORCID,Chung Kyoung-Jae1ORCID

Affiliation:

1. Department of Energy Systems Engineering, Seoul National University 1 , Seoul 08826, South Korea

2. Department of Physics, Myongji University 2 , Yongin 17058, South Korea

Abstract

In this study, electrical conductivity of copper in the low temperature part of a warm dense matter regime is investigated utilizing underwater electrical wire explosion. Specifically, for the vapor/plasma region with a density of ∼0.01 normal density, temperature up to 10 kK, and the liquid–vapor two-phase region below the binodal curve, the electrical conductivity of copper is measured as a function of density and temperature by means of shadowgraph imaging, spectroscopy, and electrical measurements. In this region, anomalous temperature dependence and characteristics originated from a phase transition are found. Based on the careful analysis of experiments and model calculations, it is revealed that bound electrons, in addition to free electrons, contribute significantly to the electrical conductivity in the vapor/plasma region, and that the associated phase transition kinetics play a substantial role in adequately describing the behavior in the liquid–vapor two-phase region. An improved electrical conductivity model emerging from our combined experimental and theoretical study that accounts for the characteristics in the low temperature regime of the warm dense matter is presented.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3