The effect of polymer stiffness on magnetization reversal of magnetorheological elastomers

Author:

Clark Andy T.1ORCID,Marchfield David2ORCID,Cao Zheng3ORCID,Dang Tong1ORCID,Tang Nan4,Gilbert Dustin4ORCID,Corbin Elise A.356ORCID,Buchanan Kristen S.2ORCID,Cheng Xuemei M.1ORCID

Affiliation:

1. Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, USA

2. Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA

3. Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, USA

4. Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA

5. Department of Material Science and Engineering, University of Delaware, Newark, Delaware 19716, USA

6. Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA

Abstract

Ultrasoft magnetorheological elastomers (MREs) offer convenient real-time magnetic field control of mechanical properties that provides a means to mimic mechanical cues and regulators of cells in vitro. Here, we systematically investigate the effect of polymer stiffness on magnetization reversal of MREs using a combination of magnetometry measurements and computational modeling. Poly-dimethylsiloxane-based MREs with Young’s moduli that range over two orders of magnitude were synthesized using commercial polymers Sylgard™ 527, Sylgard 184, and carbonyl iron powder. The magnetic hysteresis loops of the softer MREs exhibit a characteristic pinched loop shape with almost zero remanence and loop widening at intermediate fields that monotonically decreases with increasing polymer stiffness. A simple two-dipole model that incorporates magneto-mechanical coupling not only confirms that micrometer-scale particle motion along the applied magnetic field direction plays a defining role in the magnetic hysteresis of ultrasoft MREs but also reproduces the observed loop shapes and widening trends for MREs with varying polymer stiffnesses.

Funder

National Science Foundation

National Institute of General Medical Sciences

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3