Experimental study on frost resistance of hybrid fiber fly ash concrete

Author:

Zhang Jingshuang12ORCID,Wu Yanqing12ORCID,Ren Bin12

Affiliation:

1. Engineering Research Center of Underground Mine Construction, Ministry of Education, Anhui University of Science and Technology 1 , Huainan 232001, Anhui, China

2. School of Civil Engineering and Architecture, Anhui University of Science and Technology 2 , Huainan 232001, Anhui, China

Abstract

Based on the orthogonal test, the optimized ratio of hybrid fiber fly ash concrete prepared with different volume admixtures of polypropylene fiber and polyacrylonitrile fiber, and different lengths, was obtained, and its frost resistance was evaluated in terms of mass change, dynamic elastic modulus, compressive strength, and splitting tensile strength before and after water and salt freezing. Then, the damage mechanism was discussed by combining the pore structure and SEM analysis. The results show that the tensile strength and relative dynamic elastic modulus of specimens after the water freezing cycle are better than those after the salt freezing cycle with the same number of freeze-thaw cycles, and the mass loss rate is less than that of the salt freezing cycle; the compressive strength and the splitting tensile strength of hybrid fiber fly ash concrete increased by 8.5% and 9.5%, and 46.8% and 12.1%, respectively, after 60 times of water freezing and salt freezing cycles compared with the benchmark fly ash concrete. As the number of freeze-thaw cycles increased, the pore air content and the frequency of large pores increased and the frequency of small pores decreased; in terms of the pore distribution of concrete, the distribution of pore structure was more reasonable for water freeze cycle relative to salt freeze cycle and for hybrid fiber fly ash concrete relative to the base fly ash concrete. Thus, it can be found that hybrid fibers incorporated into concrete can reduce the damage to the concrete interior by the freeze-thaw cycle and significantly improve the frost resistance of concrete.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3