Three-axis torque investigation of interfacial exchange coupling in a NiFe/CoO bilayer micromagnetic disk

Author:

Dunsmore M. G.1ORCID,Thibault J. A.1ORCID,Fast K. R.1,Sauer V. T. K.1,Losby J. E.123,Diao Z.14,Belov M.3ORCID,Freeman M. R.1ORCID

Affiliation:

1. Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

2. Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada

3. Nanotechnology Research Centre (NANO), National Research Council Canada (NRC), Edmonton, Alberta T6G 2M9, Canada

4. Department of Electronic Engineering, Maynooth University, W23 F2H6 Maynooth, County Kildare, Ireland

Abstract

Micrometer diameter bilayers of NiFe (permalloy, Py) and cobalt oxide (CoO) deposited on nanomechanical resonators were used to investigate exchange bias effects. The mechanical compliances of two resonator axes were enhanced by severing one torsion arm, resulting in a unique three-axis resonator that responds resonantly to torques generated by a three-axis RF field. Our technique permits simultaneous measurement of three orthogonal torque components. Measurements of the anisotropies associated with interfacial exchange coupling effects have been made. At cryogenic temperatures, observations of shifted linear hysteresis loops confirmed the presence of exchange bias from the Py/CoO interface. An in-plane rotating DC bias field was used to probe in-plane anisotropies through the out-of-plane torque. Training effects in the rotational hysteresis data were observed and showed that features due to interfacial coupling did not diminish irrespective of substantial training of the unidirectional anisotropy. The data from the rotational hysteresis loops were fit with parameters from a macrospin solution to the Landau-Lifshitz-Gilbert equation. Each parameter of the exchange bias model accounts for specific features of the rotational loop.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Canada Research Chairs

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3