Experimental investigation on the hysteresis in low-pressure inductively coupled neon discharge

Author:

Hong Young-Hun1ORCID,Kim Tae-Woo1,Kim Ju-Ho1ORCID,Lim Yeong-Min1ORCID,Lee Moo-Young2,Chung Chin-Wook1ORCID

Affiliation:

1. Department of Electrical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea

2. Department of Nanoscale Semiconductor Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea

Abstract

A hysteresis phenomenon observed in neon inductive discharge at low gas pressure is investigated in terms of the evolution of the electron energy distribution function (EEDF). Generally, the hysteresis phenomenon has been reported at high-pressure Ramsauer gas discharges. However, in neon plasma, we found that the hysteresis phenomenon occurs even at low gas pressure (5 mTorr). Furthermore, the hysteresis vanishes with an increase in the gas pressure (10 and 25 mTorr). To analyze this hysteresis, the EEDF is measured depending on the radio frequency power. The EEDF at 10 mTorr sustains the bi-Maxwellian distribution during an E–H transition. On the other hand, the EEDF at 5 mTorr changes dramatically between discharge modes. At 5 mTorr, the measured EEDF for the E mode has the Maxwellian distribution due to high collisional heating in the bulk plasma. The EEDF for the H mode has the bi-Maxwellian distribution because collisionless heating in the skin depth is dominant. This apparent evolution of the EEDF causes a nonlinear energy loss due to collisions during the discharge mode transition. Therefore, the plasma can maintain the H mode discharge with high ionization efficiency, even at a lower applied power, which results in the hysteresis.

Funder

Ministry of Trade, Industry and Energy

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3