A feature extraction method of rub-impact based on adaptive stochastic resonance and Hjorth parameter

Author:

Yu Mingyue1ORCID,Cong Haonan1,Zhang Yi1ORCID,Xi Jianhui1,Li Zhaohua1

Affiliation:

1. Shenyang Aerospace University , Shenyang, China

Abstract

The characteristic frequency of a rub-impact fault is usually very complex and may contain higher harmonics and subharmonics. Due to the uncertainty of harmonic components and the complexity of signal-to-noise ratio (SNR) operation, the general scale transformation stochastic resonance (GSTSR) has certain limitations in the identification of rub-impact faults. To solve this problem, the paper starts with complexity and proposes a rub-impact fault identification method combining a swarm intelligence optimized algorithm (SIOA) with Hjorth parameters and GSTSR. The complexity of vibration signals will change greatly before and after rub-impact faults. The complexity parameter in Hjorth parameters can effectively embody the complexity of signals and is invulnerable to noise interference. Therefore, the complexity parameter in the Hjorth parameters is taken as the objective function of SIOA and combined with GSTSR. Vibration signals from cases are taken as input to adaptive stochastic resonant (ASR) systems, and the system parameters are adaptively and synchronously adjusted to realize the maximal resonant effect. Finally, the spectrum analysis of signals obtained from ASR is used to extract failure features and recognize faults in the rotor–stator rub-impact. The proposed method is verified by comparing it with other schemes under different SIOAs and different operating conditions. The result of the comparison shows that the complexity parameter of the Hjorth parameters can be taken as the objective function of SIOA to accurately identify the rub-impact fault. Meanwhile, the proposed method, compared with the method of taking SNR as an objective function, has a better effect on reducing time costs and strengthening fault characteristics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Aeronautical Science Foundation of China

Department of Education of Liaoning Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3