Deep learning path-like collective variable for enhanced sampling molecular dynamics

Author:

Fröhlking Thorben123ORCID,Bonati Luigi4ORCID,Rizzi Valerio123ORCID,Gervasio Francesco Luigi1235ORCID

Affiliation:

1. School of Pharmaceutical Sciences, University of Geneva 1 , Rue Michel Servet 1, 1206 Genève, Switzerland

2. Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva 2 , 1206 Genève, Switzerland

3. Swiss Institute of Bioinformatics, University of Geneva 3 , 1206 Genève, Switzerland

4. Italian Institute of Technology 4 , Via Melen 83, 16152 Genoa, Italy

5. Department of Chemistry, University College London 5 , London WC1E 6BT, United Kingdom

Abstract

Several enhanced sampling techniques rely on the definition of collective variables to effectively explore free energy landscapes. The existing variables that describe the progression along a reactive pathway offer an elegant solution but face a number of limitations. In this paper, we address these challenges by introducing a new path-like collective variable called the “deep-locally non-linear-embedding,” which is inspired by principles of the locally linear embedding technique and is trained on a reactive trajectory. The variable mimics the ideal reaction coordinate by automatically generating a non-linear combination of features through a differentiable generalized autoencoder that combines a neural network with a continuous k-nearest neighbor selection. Among the key advantages of this method is its capability to automatically choose the metric for searching neighbors and to learn the path from state A to state B without the need to handpick landmarks a priori. We demonstrate the effectiveness of DeepLNE by showing that the progression along the path variable closely approximates the ideal reaction coordinate in toy models, such as the Müller-Brown potential and alanine dipeptide. Then, we use it in the molecular dynamics simulations of an RNA tetraloop, where we highlight its capability to accelerate transitions and estimate the free energy of folding.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3