Gate control of interlayer exchange coupling in ferromagnetic semiconductor trilayers with perpendicular magnetic anisotropy

Author:

Chongthanaphisut Phunvira1,Lee Kyung Jae1ORCID,Lee Sanghoon1ORCID,Liu X.2ORCID,Dobrowolska M.2,Furdyna J. K.2

Affiliation:

1. Department of Physics, Korea University, Seoul 136-701, South Korea

2. Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

Abstract

Interlayer exchange coupling (IEC) has been intensively investigated in magnetic multilayers, owing to its potential for magnetic memory and logic device applications. Although IEC can be reliably obtained in metallic ferromagnetic multilayer systems by adjusting structural parameters, it is difficult to achieve gate control of IEC in metallic systems due to their large carrier densities. Here, we demonstrate that IEC can be reliably controlled in ferromagnetic semiconductor (FMS) trilayer structures by means of an external gate voltage. We show that, by designing a quantum-well-type trilayer structure based on (Ga,Mn)(As,P) FMSs and adapting the ionic liquid gating technique, the carrier density in the nonmagnetic spacer of the system can be modulated with gate voltages of only a few volts. Due to this capability, we are able to vary the strength of IEC by as much as 49% in the FMS trilayer. These results provide important insights into design of spintronic devices and their energy-efficient operation.

Funder

National Research Foundation of Korea

National Science Foundation

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3