Affiliation:
1. Department of Physics, Korea University, Seoul 136-701, South Korea
2. Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
Abstract
Interlayer exchange coupling (IEC) has been intensively investigated in magnetic multilayers, owing to its potential for magnetic memory and logic device applications. Although IEC can be reliably obtained in metallic ferromagnetic multilayer systems by adjusting structural parameters, it is difficult to achieve gate control of IEC in metallic systems due to their large carrier densities. Here, we demonstrate that IEC can be reliably controlled in ferromagnetic semiconductor (FMS) trilayer structures by means of an external gate voltage. We show that, by designing a quantum-well-type trilayer structure based on (Ga,Mn)(As,P) FMSs and adapting the ionic liquid gating technique, the carrier density in the nonmagnetic spacer of the system can be modulated with gate voltages of only a few volts. Due to this capability, we are able to vary the strength of IEC by as much as 49% in the FMS trilayer. These results provide important insights into design of spintronic devices and their energy-efficient operation.
Funder
National Research Foundation of Korea
National Science Foundation
Subject
General Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献