Experimental visualization of optical spatial sensitivity through combination of diffuse correlation spectroscopy and acoustic radiation force

Author:

Di Wenqi1ORCID,Zhang Ruizhi1ORCID,Gui Zhiguo1,Shang Yu2ORCID

Affiliation:

1. State Key Laboratory of Dynamic Measurement Technology, North University of China 1 , No. 3 Xueyuan Road, Taiyuan 030051, China

2. School of Life and Health Technology, Dongguan University of Technology 2 , Daxue Road, Songshan Lake District, Dongguan 523808, China

Abstract

In field of diffuse optics for biomedical applications, the spatial sensitivity (SS) is a key parameter to evaluate or optimize the adopted modalities, such as penetration depth, signal-to-noise ratio as well as sensor distribution. Nevertheless, SS is usually estimated via computer simulations (e.g., photon Monte Carlo simulation), rather than being quantified experimentally, due to the technical difficulty. In this study, we report the experimental measurement and visualization of optical SS through combination of acoustic radiation force (ARF) and the scanning diffuse correlation spectroscopy (DCS). By spatially varying the location of ARF focal spot within liquid phantom, the enhanced particle flow, which represents the most spatial sensitive location, was identified by DCS. The experimental outcomes were cross-validated with the photon Monte Carlo simulation, thus demonstrating its accuracy, feasibility, and potential for guiding clinical usage.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shanxi Province

Graduate Innovation Program in Shanxi Province

Graduate Technology Program of North University of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3