Interconnected ordinal pattern complex network for characterizing the spatial coupling behavior of gas–liquid two-phase flow

Author:

Du Meng1ORCID,Wei Jie1ORCID,Li Meng-Yu2ORCID,Gao Zhong-ke2ORCID,Kurths Jürgen34ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Tianjin University of Science and Technology 1 , Tianjin 300222, China

2. School of Electrical Engineering and Automation, Tianjin University 2 , Tianjin 300072, China

3. Research Department Complexity Science, Potsdam Institute for Climate Impact Research 3 , 14473 Potsdam, Germany

4. Institute of Physics, Humboldt University of Berlin 4 , 12489 Berlin, Germany

Abstract

The complex phase interactions of the two-phase flow are a key factor in understanding the flow pattern evolutional mechanisms, yet these complex flow behaviors have not been well understood. In this paper, we employ a series of gas–liquid two-phase flow multivariate fluctuation signals as observations and propose a novel interconnected ordinal pattern network to investigate the spatial coupling behaviors of the gas–liquid two-phase flow patterns. In addition, we use two network indices, which are the global subnetwork mutual information (I) and the global subnetwork clustering coefficient (C), to quantitatively measure the spatial coupling strength of different gas–liquid flow patterns. The gas–liquid two-phase flow pattern evolutionary behaviors are further characterized by calculating the two proposed coupling indices under different flow conditions. The proposed interconnected ordinal pattern network provides a novel tool for a deeper understanding of the evolutional mechanisms of the multi-phase flow system, and it can also be used to investigate the coupling behaviors of other complex systems with multiple observations.

Funder

Tianjin Technical Innovation Guidance Special Fund

Natural Science Foundation of Tianjin City

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3