Affiliation:
1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
Abstract
In microrheology, the local rheological properties, such as the viscoelasticity of a complex fluid, are inferred from the free or forced motion of embedded colloidal probe particles. Theoretical machinery developed for forced-probe microrheology of colloidal suspensions focused on either constant-force (CF) or constant-velocity (CV) probes, while in experiments, neither the force nor the kinematics of the probe is fixed. More importantly, the constraint of CF or CV introduces a difficulty in the meaningful quantification of the fluctuations of the probe due to a thermodynamic uncertainty relation. It is known that, for a Brownian particle trapped in a harmonic potential well, the product of the standard deviations of the trap force and the particle position is dk B T in d dimensions, with k B T being the thermal energy. As a result, if the force (position) is not allowed to fluctuate, the position (force) fluctuation becomes infinite. To allow the measurement of fluctuations in theoretical studies, in this work, we consider a microrheology model in which the embedded probe is dragged along by a moving harmonic potential so that both its position and the trap force are allowed to fluctuate. Starting from the full Smoluchowski equation governing the dynamics of N hard active Brownian particles, we derive a pair Smoluchowski equation describing the dynamics of the probe as it interacts with one bath particle by neglecting hydrodynamic interactions among particles in the dilute limit. From this, we determine the mean and the variance (i.e., fluctuation) of the probe position in terms of the pair probability distribution. We then characterize the behavior of the system in the limits of both weak and strong trap. By taking appropriate limits, we show that our generalized model can be reduced to the well-studied CF or CV microrheology models.
Funder
National Science Foundation
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献