Time-dependent Kohn−Sham electron dynamics coupled with nonequilibrium plasmonic response via atomistic electromagnetic model

Author:

Huang Xunkun1ORCID,Zhang Wenshu1ORCID,Liang WanZhen1ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, People’s Republic of China

Abstract

Computational modeling of plasmon-mediated molecular photophysical and photochemical behaviors can help us better understand and tune the bound molecular properties and reactivity and make better decisions to design and control nanostructures. However, computational investigations of coupled plasmon–molecule systems are challenging due to the lack of accurate and efficient protocols to simulate these systems. Here, we present a hybrid scheme by combining the real-time time-dependent density functional theory (RT-TDDFT) approach with the time-domain frequency dependent fluctuating charge (TD-ωFQ) model. At first, we transform ωFQ in the frequency-domain, an atomistic electromagnetic model for the plasmonic response of plasmonic metal nanoparticles (PMNPs), into the time-domain and derive its equation-of-motion formulation. The TD-ωFQ introduces the nonequilibrium plasmonic response of PMNPs and atomistic interactions to the electronic excitation of the quantum mechanical (QM) region. Then, we combine TD-ωFQ with RT-TDDFT. The derived RT-TDDFT/TD-ωFQ scheme allows us to effectively simulate the plasmon-mediated “real-time” electronic dynamics and even the coupled electron–nuclear dynamics by combining them with the nuclear dynamics approaches. As a first application of the RT-TDDFT/TD-ωFQ method, we study the nonradiative decay rate and plasmon-enhanced absorption spectra of two small molecules in the proximity of sodium MNPs. Thanks to the atomistic nature of the ωFQ model, the edge effect of MNP on absorption enhancement has also been investigated and unveiled.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3