The aerobreakup of bubbles in continuous airflow

Author:

Wang Ziyue1,Liu Liansheng1ORCID,Duan Runze1ORCID,Tian Liang1

Affiliation:

1. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract

Floating soap bubbles usually break up owing to gravitational drainage, surface evaporation, environmental disturbances, and collisions with objects. If a gust of wind blows into a bubble, does the bubble break, and, if so, how does it do so? This study reports experiments that use a high-speed camera to examine the dynamic behaviors of a suspended bubble that is suddenly exposed to continuous airflow. Specifically, the behaviors and mechanisms of the aerobreakup of bubbles are explored. The suspended bubble undergoes shedding and deformation under aerodynamic force and flows with airflow. As the Weber number ( We) increases, the parameter of Taylor deformation ( DT) first increases and then decreases. At a higher Reynolds number, K–H waves appear on the surface of the film owing to the strong shear of airflow on the liquid film. Most such bubbles break due to the shear of the wake vortices on the leeward surface or surface waves on the windward surface, both of which are shearing. The aerobreakup of the bubbles becomes more severe with an increase in We, and they successively exhibit modes of wind-flowing, leeward breakup, windward breakup, and multihole breakup.

Funder

China National Nature Science Fund

Tianjin Science and Technology Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3