Affiliation:
1. Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education , 5268 Renmin Street, Changchun, China
Abstract
Emerging optoelectronic memristors are promising candidates to develop neuromorphic computing, owing to the combined advantages of photonics and electronics. However, the reversible modulation on device conductance usually requires complicated operations involving hybrid optical/electrical signals. Herein, we design a fully light-modulated memristor based on ZnO/MoOx heterojunction, which exhibits potentiation and depression behaviors under the irradiation of ultraviolet and visible light, respectively. Several basic synaptic functions have been emulated by utilizing optical signals, including short-term/long-term plasticity and spike-number-dependent plasticity. Based on the all-optical modulation characteristics, low-level image pre-processing (including contrast enhancement and noise reduction) is demonstrated. Furthermore, logic operations (“AND,” “NOTq,” and “NIMP”) can be performed by combining various optical signals in the same device. The memristive switching mechanism under optical stimulus can be attributed to barrier change at the heterojunction interface. This work proposes a fully light-modulated memristor based on ZnO/MoOx heterojunction that may promote the development of neuromorphic computing with high efficiency.
Funder
the NSFC Program
the 111 Project
the Foundamental Research Funds for the Central Universitites
the Fund from Jilin Province
the National Key R&D Program of China
the NSFC for Distinguished Young Scholars
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献