Impact response of germanium over 300–1143 K temperature range

Author:

Zaretsky E. B.1ORCID,Frage N.2ORCID,Kalabukhov S.2ORCID

Affiliation:

1. Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel

2. Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel

Abstract

Impact response of <111> oriented germanium single crystals and polycrystalline samples obtained by high-pressure spark plasma sintering of pure germanium powder was studied in two series of planar impact tests performed at 300 and 1143 K with samples of different thicknesses and in a series of tests with 2 mm single crystals preheated up to the temperatures 300–1143 K. In all the tests, the samples were shock-loaded by tungsten impactors having velocity 980 ± 40 m/s, while the velocity of the interface between the germanium sample and the fused silica window was continuously monitored by velocity interferometer. Under compression, the cubic diamond (cd) germanium transforms into its high-pressure (β-Sn or liquid) modification. The stress corresponding to the upper bound of the existence of impact loaded cd germanium was found to depart upward from that obtained in the static experiments. At temperatures greater than 900 K, this departure increases due to the initiation of melting in the shock-loaded material. Part of the velocity histories recorded with either single or polycrystalline samples was characterized by a four-wave (instead of the expected three-wave) structure. This “surplus” wave seems to be caused by a short-term existence of an intermediate (nonequilibrium) germanium phase which, however, does not affect the principal germanium Hugoniot.

Funder

Israel Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3