Elastocaloric effect and cooling performance of NiTi sheets in a continuous rotating bending elastocaloric cooler

Author:

Cheng Siyuan1ORCID,Sun Wanju1ORCID,Li Xueshi2ORCID,Zhang Jiongjiong3ORCID

Affiliation:

1. School of Mechanical Engineering, Hebei University of Science and Technology 1 , Shijiazhuang 050018, China

2. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology 2 , Clear Water Bay, Hong Kong, China

3. Department of Materials Science and Engineering, Southern University of Science and Technology 3 , Shenzhen, Guangdong, China

Abstract

Elastocaloric cooling technology has the prospect of becoming a commercialized green alternative to current vapor-compression technology, and the systematic characterization of the elastocaloric effect and microstructure has become increasingly significant for the optimization of elastocaloric coolers and heat pumps. In this work, a comprehensive elastocaloric effect characterization for a dog-bone shaped NiTi sheet with a thickness of 0.5 mm was performed for the application in a compact continuous rotating bending elastocaloric cooler. The elastocaloric effect was found to be nearly identical under Brayton-like and sinusoidal force-controlled cyclic tensile loadings. The maximum adiabatic temperature change values of 31 and 23 K were recorded in Brayton-like cyclic loadings under maximum applied stress of 600 and 400 MPa, respectively, with an applied strain rate of 0.1 s−1. During fatigue tests, large applied stress (>600 MPa) and high applied strain rates (>0.1 s−1) tended to result in premature failure of the NiTi sheet samples. In the continuous rotating bending elastocaloric cooler, the sheets generated a temperature span of 6 K between the copper heat sink and heat source. The results of this work provide a set of thermophysical property data for the elastocaloric solid refrigerant and insights for the optimization of structural and operational parameters in elastocaloric coolers and heat pumps.

Funder

National Natural Science Foundation of China

Science Research Project of Colleges and Universities in Hebei Province

Natural Science Research Start-up Foundation of Recruiting Talents at Hebei University of Science and Technology

IER Foundation 2020

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3