Process gas dependence of spin–orbit torque in Pt/NiO/Co structures

Author:

Morita T.1ORCID,Koyama T.1234ORCID,Chiba D.1245ORCID

Affiliation:

1. Institute of Scientific and Industrial Research (SANKEN), Osaka University 1 , Ibaraki, Osaka 567-0047, Japan

2. Center for Spintronics Research Network at Osaka, Osaka University 2 , Toyonaka, Osaka 560-8531, Japan

3. JST, PRESTO 3 , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

4. Division of Spintronics Research Network, Institute for Open and Transdisciplinary Research Initiatives, Osaka University 4 , Osaka 565-0871, Japan

5. International Center for Synchrotron Radiation Innovation Smart, Tohoku University 5 , Sendai, 980-8577, Japan

Abstract

Recently, to enlarge spin-current-induced phenomena, such as spin–orbit torque (SOT) in a ferromagnet (FM)/heavy-metal (HM) bilayer, enhancement of spin-current transmittance by inserting an antiferromagnetic insulator at the FM/HM interface has been extensively studied. In this study, we have investigated the SOT modulation in a Pt/NiO/Co structure in which the NiO layer was deposited using Ar and Xe process gases. Consequently, the quality of the NiO layer could be regulated. An increase in the damping-like SOT efficiency was observed by inserting the 1 nm NiO layer in the Ar type while it monotonically decreased with an increase in the NiO thickness in the Xe type. Significant temperature dependence of the SOT efficiency in the Ar type indicates that thermal magnon largely contributes to the spin-current propagation. X-ray diffraction measurement result suggests that the difference in crystallinity of the NiO layer between the Ar and Xe types attributes to the different SOT modulations.

Funder

Leading Graduate Schools" Interactive Materials Science Cadet Program"

Japan Society for the Promotion of Science London

Next-Generation Novel Integrated Circuits Centers

Precursory Research for Embryonic Science and Technology

Spintronics Research Network of Japan

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3