Affiliation:
1. School of Automation, Central South University 1 , Changsha 410083, China
2. School of Computer Science and Engineering, Central South University 2 , Changsha 410083, China
Abstract
The contact force network, usually organized inhomogeneously by the inter-particle forces on the bases of the contact network topologies, is essential to the rigidity and stability in amorphous solids. How to capture such a “backbone” is crucial to the understanding of various anomalous properties or behaviors in those materials, which remains a central challenge presently in physics, engineering, or material science. Here, we use a novel graph neural network to predict the contact force network in two-dimensional granular materials under uniaxial compression. With the edge classification model in the framework of the deep graph library, we show that the inter-particle contact forces can be accurately estimated purely from the knowledge of the static microstructures, which can be acquired from a discrete element method or directly visualized from experimental methods. By testing the granular packings with different structural disorders and pressure, we further demonstrate the robustness of the optimized graph neural network to changes in various model parameters. Our research tries to provide a new way of extracting the information about the inter-particle forces, which substantially improves the efficiency and reduces the costs compared to the traditional experiments.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Key Project of Research and Development Plan of Hunan Province
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献