Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures

Author:

Walczak Michal1ORCID,Brady Ryan A.2ORCID,Leathers Adrian1ORCID,Kotar Jurij1ORCID,Di Michele Lorenzo345ORCID

Affiliation:

1. Department of Physics—Cavendish Laboratory, University of Cambridge 1 , Cambridge CB3 0HE, United Kingdom

2. Department of Chemistry, King’s College London 2 , London SE1 1DB, United Kingdom

3. Department of Chemical Engineering and Biotechnology, University of Cambridge 3 , Cambridge CB3 0AS, United Kingdom

4. Department of Chemistry, Imperial College London 4 , London W12 0BZ, United Kingdom

5. FabriCELL, Imperial College London 5 , London W12 0BZ, United Kingdom

Abstract

Three-dimensional crystalline frameworks with nanoscale periodicity are valuable for many emerging technologies, from nanophotonics to nanomedicine. DNA nanotechnology has emerged as a prime route for constructing these materials, with most approaches taking advantage of the structural rigidity and bond directionality programmable for DNA building blocks. Recently, we have introduced an alternative strategy reliant on flexible, amphiphilic DNA junctions dubbed C-stars, whose ability to crystallize is modulated by design parameters, such as nanostructure topology, conformation, rigidity, and size. While C-stars have been shown to form ordered phases with controllable lattice parameter, response to stimuli, and embedded functionalities, much of their vast design space remains unexplored. Here, we investigate the effect of changing the chemical nature of the hydrophobic modifications and the structure of the DNA motifs in the vicinity of these moieties. While similar design variations should strongly alter key properties of the hydrophobic interactions between C-stars, such as strength and valency, only limited differences in self-assembly behavior are observed. This finding suggests that long-range order in C-star crystals is likely imposed by structural features of the building block itself rather than the specific characteristics of the hydrophobic tags. Nonetheless, we find that altering the hydrophobic regions influences the ability of C-star crystals to uptake hydrophobic molecular cargoes, which we exemplify by studying the encapsulation of antibiotic penicillin V. Besides advancing our understanding of the principles governing the self-assembly of amphiphilic DNA building blocks, our observations thus open up new routes to chemically program the materials without affecting their structure.

Funder

Royal Society

European Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3