Affiliation:
1. Digital Engineering Center, Skolkovo Institute of Science and Technology, 30 Bolshoi Boulevard, bld. 1, Moscow 121205, Russia
2. Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom
Abstract
Optics and, more recently, coherent matter waves enabled inertial sensors, such as accelerometers and gyroscopes, to reach high levels of resolution and sensitivity. As these technologies rest on physical phenomena that require particular setups and working conditions, e.g., kilometers of optical fibers or ultralow temperatures, their application range is limited because of lack of portability. Here, we propose a path forward considering a superconducting quantum interference device (SQUID) to detect and measure acceleration by using electronic interferometry. The basic idea is not to use a SQUID as a magnetometer in acceleration measurement setups, but as an accelerometer. The operation of such an accelerometer rests on the ability of the Cooper pairs to record their wave function phase change, as the device is subjected either to a transverse acceleration or vibrations. We provide numerical evidence for the feasibility of SQUID-based accelerometers that can be used for transverse acceleration and oscillatory motion measurement.
Funder
Horizon 2020 Framework Programme
Subject
Physics and Astronomy (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Josephson-Based Qubit;Synthesis Lectures on Engineering, Science, and Technology;2024-07-14