Prediction of heating performance of carbon dioxide heat pump air conditioning system for electric vehicles based on PSO-BP optimization

Author:

Zhang Yan12ORCID,Zhao Yu1ORCID,Yan Fuwu3ORCID,He Liange14ORCID,Zhao Donggang1ORCID,Huang Jianglu1ORCID

Affiliation:

1. Key Laboratory of Advanced Manufacture Technology for Automobile Parts (Chongqing University of Technology), Ministry of Education 1 , Chongqing 400054, China

2. Chongqing Tsingshan Industrial Co., Ltd 2 ., Chongqing 402761, China

3. Chongqing SERES New Energy Vehicle Design Institute Co., Ltd. 3 , Chongqing 401335, China

4. Ningbo Shenglong Group Co., Ltd. 4 , Ningbo 315104, China

Abstract

CO2 heat pump air conditioning (HPAC) systems for electric vehicles (EVs) have received widespread attention for their excellent low-temperature heating capabilities. However, the range of EVs is limited by the battery energy storage, which makes the energy demand of the heating system affect the energy use efficiency of the drive battery. In order to measure the thermal economy of the air conditioning (AC) system in terms of heating, the index of coefficient of performance (COP) is often used. Accurate COP prediction can help optimize the performance of heat HPAC systems for EVs to avoid energy wastage and thus improve the range of the vehicle. In this study, we use a backpropagation (BP) neural network combined with the particle swarm optimization (PSO) algorithm to predict and optimize the COP of the CO2 HPAC system for EVs. First, a COP prediction model of the CO2 HPAC system for EVs was established, which can consider a variety of influencing factors, and the key parameters affecting the COP of the AC system were obtained through experiments. Second, a BP neural network is used to predict the COP of the CO2 HPAC system, and in order to overcome the shortcomings of the BP neural network, which is slow and prone to fall into the minimum value, the particle swarm algorithm PSO is introduced to optimize the weights and biases of the BP neural network, so as to improve the accuracy and stability of the prediction. Through this study, we combine the BP neural network with the PSO algorithm to achieve accurate prediction and optimization of the COP of the HPAC system of an EV, which provides a strong support for the improvement of energy use efficiency. Second, we considered a variety of influencing factors, such as outdoor temperature, compressor speed, and EV status, which made the prediction model more accurate and applicable. Finally, the method proposed in this study is validated on a real dataset, and the optimization of the BP neural network using the particle swarm algorithm PSO can improve the accuracy of COP prediction for HPAC systems by 65.8%.

Funder

Natural Science Foundation of Chongqing Municipality

the youth project of science and technology research program of Chongqing Education Commission of China

Chongqing Graduate Student Research Innovation Project

Special Major Project of Technological Innovation and Application Development of Chongqing

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3