Temporally stable rotational coherent states for molecular simulations. II. Symmetric rotor case

Author:

Stopera Christopher1ORCID,Morales Jorge A.2ORCID

Affiliation:

1. Department of Chemistry and Occupational Health Sciences, University of North Alabama, Florence, Alabama 35632, USA

2. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA

Abstract

Following our preceding work on spherical and linear rotors [C. Stopera and J. A. Morales, J. Chem. Phys. 152, 134112 (2020)], we reformulate an earlier rotational coherent state (CS) set to obtain a temporally stable (TS) CS set for symmetric rotors. Being TS, the new CSs remain within its own set during dynamics by evolving exclusively through their parameters. The TS CS set is now appropriate to reconstruct quantum rotational properties from classical-mechanics simulations of chemical reactions. Following literature precedents, we enforce temporal stability by incorporating action-angle-related phase factors into two parameters of the original CS set. Proofs and final expressions of the symmetric-rotor CS turn out more intricate than those of its spherical-rotor counterpart. We demonstrate and examine the key properties of the new CS set: continuity, resolution of unity, temporal stability, action identity, minimum uncertainty relationships, and quasi-classical behavior. Regarding the last property, we demonstrate that the body-fixed z-component of the CS angular momentum average evolves exactly as its classical counterpart, and that the x- and y-components display an astonishing analogy with their classical counterparts in terms of functional form, precession angular velocities, amplitudes, and phases. We elucidate some of these properties via computer simulations of a rotating benzene molecule represented with the CS set. We discuss the utilization of this CS set to reconstruct quantum rotational properties of symmetric-rotor molecules from classical-mechanics simulations. The new CS set is appropriate to establish quantum-classical connections for rotational properties in chemical dynamics, statistical mechanics, spectroscopy, nuclear physics, and quantum computing.

Funder

National Institutes of Health

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3