The orientation dependence of cavity-modified chemistry

Author:

Liebenthal Marcus Dante1ORCID,DePrince A. Eugene1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306-4390, USA

Abstract

Recent theoretical studies have explored how ultra-strong light–matter coupling can be used as a handle to control chemical transformations. Ab initio cavity quantum electrodynamics calculations demonstrate that large changes to reaction energies or barrier heights can be realized by coupling electronic degrees of freedom to vacuum fluctuations associated with an optical cavity mode, provided that large enough coupling strengths can be achieved. In many cases, the cavity effects display a pronounced orientational dependence. Here, we highlight the critical role that geometry relaxation can play in such studies. As an example, we consider a recent work [Pavošević et al., Nat. Commun. 14, 2766 (2023)] that explored the influence of an optical cavity on Diels–Alder cycloaddition reactions and reported large changes to reaction enthalpies and barrier heights, as well as the observation that changes in orientation can inhibit the reaction or select for one reaction product or another. Those calculations used fixed molecular geometries optimized in the absence of the cavity and fixed relative orientations of the molecules and the cavity mode polarization axis. Here, we show that when given a chance to relax in the presence of the cavity, the molecular species reorient in a way that eliminates the orientational dependence. Moreover, in this case, we find that qualitatively different conclusions regarding the impact of the cavity on the thermodynamics of the reaction can be drawn from calculations that consider relaxed vs unrelaxed molecular structures.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3