Gain recovery dynamics in active type-II semiconductor heterostructures

Author:

Schäfer F.1ORCID,Stein M.1ORCID,Lorenz J.1ORCID,Dobener F.1ORCID,Ngo C.2ORCID,Steiner J. T.2ORCID,Fuchs C.3ORCID,Stolz W.3ORCID,Volz K.3ORCID,Meier T.2ORCID,Hader J.4ORCID,Moloney J. V.4ORCID,Koch S. W.45ORCID,Chatterjee S.1ORCID

Affiliation:

1. Institute of Experimental Physics I and Center for Materials Research (LaMa), Justus-Liebig-University Giessen 1 , Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

2. Department of Physics, Paderborn University 2 , Warburger Strasse 100, D-33098 Paderborn, Germany

3. Structure & Technology Research Laboratory (WZMW), Philipps-University Marburg 3 , Hans-Meerwein-Straße 6, D-35032 Marburg, Germany

4. Wyant College of Optical Sciences, The University of Arizona 4 , 1630 East University Boulevard, Tucson, Arizona 85721, USA

5. Department of Physics and Materials Sciences Center, Philipps-Universität Marburg 5 , Renthof 5, D-35032 Marburg, Germany

Abstract

Type-II heterostructures as active layers for semiconductor laser devices combine the advantages of a spectrally broad, temperature stable, and efficient gain with the potential for electrical injection pumping. Their intrinsic charge carrier relaxation dynamics limit the maximum achievable repetition rates beyond any constraints of cavity design or heat dissipation. Of particular interest are the initial build up of gain after high-energy injection and the gain recovery dynamics following depletion through a stimulated emission process. The latter simulates the operation condition of a pulsed laser or semiconductor optical amplifier. An optical pump pulse injects hot charge carriers that eventually build up broad spectral gain in a model (Ga,In)As/GaAs/Ga(As,Sb) heterostructure. The surplus energies of the optical pump mimic the electron energies typical for electrical injection. Subsequently, a second laser pulse tuned to the broad spectral gain region depletes the population inversion through stimulated emission. The spectrally resolved nonlinear transmission dynamics reveal gain recovery times as fast as 5 ps. These data define the intrinsic limit for the highest laser repetition rate possible with this material system in the range of 100 GHz. The experimental results are analyzed using a microscopic many-body theory identifying the origins of the broad gain spectrum.

Funder

Deutsche Forschungsgemeinschaft

Air Force Office of Scientific Research

European Regional Development Fund

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3