Giant and broadband THz and IR emission in drift-biased graphene-based hyperbolic nanostructures

Author:

Wang L.1,Paul N. K.1,Hihath J.2,Gomez-Diaz J. S.1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of California Davis 1 , One Shields Avenue, Kemper Hall 2039, Davis, California 95616, USA

2. Biodesign Center for Bioelectronics and Biosensors, School of Electrical, Computer and Energy Engineering, Arizona State University 2 , Tempe, Arizona 85287, USA

Abstract

We demonstrate that Cherenkov radiation can be manipulated in terms of operation frequency, bandwidth, and efficiency by simultaneously controlling the properties of drifting electrons and the photonic states supported by their surrounding media. We analytically show that the radiation rate strongly depends on the momentum of the excited photonic state, in terms of magnitude, frequency dispersion, and its variation vs the properties of the drifting carriers. This approach is applied to design and realize miniaturized, broadband, tunable, and efficient terahertz and far-infrared sources by manipulating and boosting the coupling between drifting electrons and engineered hyperbolic modes in graphene-based nanostructures. The broadband, dispersive, and confined nature of hyperbolic modes relax momentum matching issues, avoid using electron beams, and drastically enhance the radiation rate—allowing that over 90% of drifting electrons emit photons. Our findings open an exciting paradigm for the development of solid-state terahertz and infrared sources.

Funder

W. M. Keck Foundation

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3