Rational design of quantum spin Hall phase in type-III van der Waals heterostructures

Author:

Xiao Xiaoliang1ORCID,Xie Zijuan2,Kong Weixiang1,Fan Jing3ORCID,Chen Zhongjia4,Wang Rui156ORCID,Wu Xiaozhi15ORCID

Affiliation:

1. Institute for Structure and Function and Department of Physics, Chongqing University 1 , Chongqing 401331, China

2. International School of Microelectronics, Dongguan University of Technology 2 , Dongguan 523000, China

3. Center for Computational Science and Engineering, Southern University of Science and Technology 3 , Shenzhen 518055, China

4. Songshan Lake Materials Laboratory 4 , Dongguan, Guangdong 523000, China

5. Chongqing Key Laboratory for Strongly Coupled Physics 5 , Chongqing 401331, China

6. Center of Quantum Materials and Devices, Chongqing University 6 , Chongqing 401331, China

Abstract

Van der Waals heterostructures (vdWHs) are effective platforms for exploring various attractive topological phases. Here, based on the low-energy effective k·p model, we propose that the type-III vdWHs, which were previously considered as only belonging to trivial metallic phases, can realize the nontrivial quantum spin Hall (QSH) effect. We reveal that the band inversion of such a QSH phase is attributed to the band alignment of momentum space matching, i.e., the conduction band minimum and valence band maximum located at the same point in momentum space near the Fermi level. Moreover, using first-principles calculations, we show that the Mg(OH)2/Ga2O2 heterobilayer, a typical type-III vdWH with high thermodynamic stability, is an ideal candidate for achieving our strategy. We further calculate the helical gapless edge states and quantized spin Hall conductance, which are visible inside the global bandgap, thus facilitating the experimental observation. Our work offers a promising pathway for realizing the QSH phase in natural materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3