Time-resolved rheometry of coarsening foams using three-dimensionally printed fractal vanes

Author:

Carraretto Igor M.12ORCID,Owens Crystal E.1ORCID,McKinley Gareth H.1ORCID

Affiliation:

1. Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

2. Dipartimento di Energia, Politecnico di Milano, via Lambruschini 4, 20156 Milano, Italy

Abstract

Aqueous foams are useful in several applications, especially to reduce liquid loading in the oil and gas industry. The rheology of these foams evolves rapidly, and suitable constitutive models are required to describe the resulting multiphase flow. We describe a new experimental setup for advanced rheometry involving 4-arm and 12-arm vane-in-textured-cup toolsets. The cup was designed to provide in situ foaming to minimize injection times and flow-history artifacts before measurement, while the 12-arm vane was selected to eliminate slip and generate a homogeneous stress field in a weak foam. Using these tools, we measure the decay of linear viscoelasticity and yield stress and link the rheological evolution to optical measurements of the bubble size distribution. Time-resolved rheological measurements of the full flow curve of an aging foam are performed and used to construct a rheological master curve. Measurements of the transient linear viscoelastic response and observations of the bubble size distribution show that foams, after an initial induction period, experience an increase in the Sauter mean bubble radius that scales as t1/2. Using the well-known Princen and Kiss model as a framework, we define a single unique time-dependent shift factor that varies with the Sauter mean bubble radius and enables us to use the rheological master curve to predict the temporal evolution of the foam's elastic and steady-state viscoplastic properties.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3