Characterizing coherences in chemical dynamics with attosecond time-resolved x-ray absorption spectroscopy

Author:

Kobayashi Yuki123ORCID,Leone Stephen R.345ORCID

Affiliation:

1. Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

2. Department of Applied Physics, Stanford University, Stanford, California 94305, USA

3. Department of Chemistry, University of California, Berkeley, California 94720, USA

4. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

5. Department of Physics, University of California, Berkeley, California 94720, USA

Abstract

Coherence can drive wave-like motion of electrons and nuclei in photoexcited systems, which can yield fast and efficient ways to exert materials’ functionalities beyond the thermodynamic limit. The search for coherent phenomena has been a central topic in chemical physics although their direct characterization is often elusive. Here, we highlight recent advances in time-resolved x-ray absorption spectroscopy (tr-XAS) to investigate coherent phenomena, especially those that utilize the eminent light source of isolated attosecond pulses. The unparalleled time and state sensitivities of tr-XAS in tandem with the unique element specificity render the method suitable to study valence electronic dynamics in a wide variety of materials. The latest studies have demonstrated the capabilities of tr-XAS to characterize coupled electronic–structural coherence in small molecules and coherent light–matter interactions of core-excited excitons in solids. We address current opportunities and challenges in the exploration of coherent phenomena, with potential applications for energy- and bio-related systems, potential crossings, strongly driven solids, and quantum materials. With the ongoing developments in both theory and light sources, tr-XAS holds great promise for revealing the role of coherences in chemical dynamics.

Funder

National Science Foundation

U.S. Department of Energy

Air Force Office of Scientific Research

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3