Simulation of neutral beam current drive on EAST tokamak

Author:

Hu Youjun1ORCID,Xu Xingyuan1ORCID,Hu Yunchan1,He Kaiyang1ORCID,Wang Jinfang1ORCID

Affiliation:

1. Institute of Plasma Physics, Chinese Academy of Sciences , Hefei 230031, China

Abstract

A neutral beam current drive on the EAST tokamak is studied by using Monte Carlo test particle code TGCO. The phase-space structure of the steady-state fast ion distribution is examined and visualized. We find that trapped ions carry co-current current near the edge and countercurrent current near the core. However, the magnitude of the trapped ion current is one order smaller than that of the passing ions. Therefore, their contribution to the fast ion current is negligible (1% of the fast ion current). We examine the dependence of the fast ion current on two basic plasma parameters: the plasma current Ip and plasma density ne. The results indicate that the dependence of fast ion current on Ip is not monotonic: with Ip increasing, the fast ion current first increases and then decreases. This dependence can be explained by the change of trapped fraction and drift-orbit width with Ip. The fast ion current decreases with the increase in plasma density ne. This dependence is related to the variation of the slowing-down time with ne, which is already well known and is confirmed in our specific situation. The electron shielding effect to the fast ion current is taken into account by using a fitting formula applicable to general tokamak equilibria and arbitrary collisionality regime. The dependence of the net current on the plasma current and density follows the same trend as that of the fast ion current.

Funder

Hefei Science Center, Chinese Academy of Sciences

Comprehensive Research Facility for Fusion Technology Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3