A deep learning-based convolutional spatiotemporal network proxy model for reservoir production prediction

Author:

Chen QilongORCID,Xu YunfengORCID,Meng Fankun,Zhao HuiORCID,Zhan WentaoORCID

Abstract

Accurate production prediction is crucial in the field of reservoir management and production optimization. Traditional models often struggle with the complexities of nonlinear relationships and high-dimensional data, which hinders their ability to capture the variability of the production process efficiently and results in time-consuming calculations. To overcome these limitations, this paper introduces an innovative proxy modeling technique employing a convolutional spatiotemporal neural network. This method utilizes convolutional neural networks to extract spatial features from high-dimensional data, while the Transformer is used to model and predict complex temporal dynamics in production. To validate the effectiveness of the proposed proxy model, two case studies involving four injection and nine production wells within two-dimensional (2D) and three-dimensional (3D) non-homogeneous reservoirs were conducted, with the R2 coefficient serving as the primary evaluation metric. As the number of training iterations and data volume increase, the proxy model demonstrates rapid convergence. In tests conducted on the 2D and 3D datasets, the average R2 value exceeded 0.96 and 0.94. These results confirm the accuracy and stability of the proxy model. It also shows that the proxy model can accurately describe the geological and fluid seepage characteristics of the reservoir, which in turn can achieve a highly accurate match with the real data. In addition, the computational time is reduced by two orders of magnitude compared to traditional models. Compared with the long short-term memory method, the accuracy of the prediction results is increased by 30%, which greatly enhances efficiency and accuracy. To some extent, the presented proxy model can provide some guidance for the efficient history match of production data.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3