Reorganization of flow field due to load rejection driven self-mitigation of high load vortex breakdown in a Francis turbine

Author:

Masoodi Faiz Azhar1ORCID,Salehi Saeed2ORCID,Goyal Rahul1ORCID

Affiliation:

1. Department of Energy Science and Engineering, Indian Institute of Technology 1 , Delhi 110016, India

2. Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology 2 , Gothenburg SE-412 96, Sweden

Abstract

This paper reports the findings of an investigation on self-mitigation of the vortex breakdown phenomenon in a high-head model Francis turbine draft tube diffuser during the transition from high load to design operating conditions. The transient operating sequence is achieved by closing the flow regulating guide vanes assuming a linearly proportional decrease in flow rate. Scale-adaptive simulation shear stress transport turbulence model is used to ensure that the large-scale structures of the unsteady flow are resolved delivering a higher accuracy compared to complete averaging. The simulation is validated through a comparison between numerical and experimental axial velocity profiles on a radial line in the draft tube near its inlet. At high load, the numerical results agree satisfactorily with experiment, excepting slightly increased deviation in the central region due to the presence of vortex breakdown. However, at best efficiency point, a close agreement between numerical and experimental velocity profiles is seen in the central region as well. At high load, the vortex core is swollen, has sharp twists, encloses zones of flow stagnation and intermittent flow reversal, and is wrapped by a well-sped outflow through strong shear layers. Commencement of the transient sequence results in a gradual reorganization of the velocity field, leading to purge of major part of the vortex breakdown, like flow reversals and stagnation, within 50% of the time of load rejection. Onward, the flow is gradually restored to a streamlined, defect-free form. A comprehensive analysis and visualization of the evolving flow field is disseminated by this article.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3