On the flow unsteadiness and operational characteristics of a novel supersonic fluidic oscillator

Author:

Maikap Spandan1ORCID,Karthick S. K.23ORCID,Rajagopal Arun Kumar1ORCID

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 1 , Jodhpur 342030, Rajasthan, India

2. Department of Mechanical Engineering, Indian Institute of Technology Madras 2 , Chennai 600036, Tamilnadu, India

3. Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad 3 , Kandi 502284, Telangana, India

Abstract

A novel supersonic jet oscillating method is investigated both experimentally and numerically. A rectangular primary supersonic jet is issued into a confined chamber with sudden enlargement. Secondary control jets are issued from the top and bottom backward-facing step regions formed due to sudden enlargement. The primary jet is oscillated in the transverse direction by blowing the secondary jets in the streamwise direction in a pulsating manner with a phase shift. The out-of-phase secondary jet blowing causes the primary jet to periodically adhere to the upper and lower part of the confined chamber, causing flapping of the primary jet and acting as a supersonic fluidic oscillator. The supersonic jet oscillation characteristics are experimentally investigated using shadowgraph type flow visualization technique and steady and unsteady pressure measurements. Quantitative analysis of the shadowgraph images using the construction of y – t and y – f plots reveals the presence of periodic jet oscillation with a discrete dominant frequency similar to the secondary jet excitation frequency. The existence of linearity between the excitation frequency and the flapping jet frequency on the low-frequency (0.66–6.6 Hz) side is first proven experimentally. Later, the high-frequency (16.67–5000 Hz) operation extent of the supersonic fluidic oscillator is further demonstrated using unsteady computational studies owing to the existing experimental facility's limitations. A reduced-order analytical framework has also been proposed to investigate the limiting oscillation frequency. It is found that the limiting frequency predicted from the proposed analytical model shows fairly good agreement with the computationally predicted results (5 kHz).

Funder

Aeronautics Research and Development Board

Science and Engineering Research Board

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3