Research on the influence of inductive wear particle sensor coils on debris detection

Author:

Huang Heng12ORCID,He Shizhong1,Xie Xiaopeng2,Feng Wei1,Zhen Huanyi1,Tao Hui1

Affiliation:

1. Guangzhou Mechanical Engineering Research Institute Co., Ltd., GuangZhou 510535, China

2. South China University of Technology, GuangZhou 510640, China

Abstract

The debris detection characteristics of the inductive wear monitoring are researched by the method of combining theoretical research and simulation analysis in this paper. The mathematical model of the change in inductance is established based on the change in the coil magnetic field by the abrasive particles. By the COMSOL simulation software, the physical model of the three-coil wear monitoring is established, and the influence of the coil structure parameters on the output induced electromotance is compared and analyzed, resulting in the optimization of the coil parameters. For metal particles with different properties and sizes, the changes in the induced electromotance during the process of passing through the coil are analyzed, obtaining the mapping relationship between each particle size and the output induced electromotance. The simulation results show that the output voltage corresponding to the particles is related to the coil structure parameters, and the larger the particle size, the larger the output voltage. Finally, through experiments, the designed sensor coil structure has been proved to have a better detection effect on metal particles, realizing the detection of ferromagnetic abrasive particles above 100 µm and non-ferromagnetic abrasive particles above 200 µm.

Funder

Guangzhou Development Zone Science and Technology Bureau

Guangzhou Mechanical Engineering Research Institute Co., Ltd.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference27 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3