Effects of tensile loading during annealing of alnico melt spun ribbons

Author:

Rinko E. A.12ORCID,Zhang X.3ORCID,Tang W.2,Lewis L. H.34,Kramer M. J.12ORCID,Anderson I. E.12

Affiliation:

1. Materials Science and Engineering Department, Iowa State University, Ames, Iowa 50011, USA

2. Ames Laboratory, Division of Materials Sciences and Engineering, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, USA

3. Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA

4. Chemical Engineering Department, Northeastern University, Boston, Massachusetts 02115, USA

Abstract

Conventional magnetic annealing (MA) of the permanent magnet alloy alnico involves application of an external magnetic field at temperatures within the spinodal decomposition range. This field biases the growth of the Fe-Co rich, ferromagnetic α1-phase in an energetically favorable 〈001〉 direction in alignment with the applied field within an Al-Ni rich, paramagnetic α2-phase. Utilizing a magnetic field to bias the α1-phase may limit alnico from reaching theoretical coercivity due to (1) the field having maximum biasing ability at temperatures near the Curie temperature where large α1-phase nanorods form and (2) connectivity of the α1-phase occurs unavoidably during MA. Both decrease the effective shape anisotropy of the α1-phase, thereby reducing coercivity. Herein, we explore tensile-loading as a biasing mechanism to control and optimize the final alnico nanostructure beyond that achieved by MA. Two samples of melt-spun alnico were heat-treated at 860 °C for 5 minutes: one sample was subjected to 10 MPa tensile stress for comparison with a stress-free control sample. Structural and magnetic characterization revealed that the stress-annealed ribbon sample possessed expected phase assemblages, but was distinguished by a ∼2× larger grain diameter and an elongated anisotropic α1-phase within grains that were oriented to a shear stress along 〈001〉 directions at an angle of ∼45° relative to the loading direction. Both types of annealing produced a similar increase in the coercivity and remanence, but a decrease in saturation magnetization.

Funder

Institute of Electrical and Electronics Engineers

Kansas City National Security Campus

Ames Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3