Critical assessment of various particle Fokker–Planck models for monatomic rarefied gas flows

Author:

Gorji Hossein1ORCID

Affiliation:

1. Laboratory of Multiscale Studies in Building Physics 2 , Empa, Dübendorf, Switzerland

Abstract

In the past decade, the particle-based Fokker–Planck (FP) method has been extensively studied to reduce the computational costs of the direct simulation Monte Carlo method for near-continuum flows. The FP equation describes a continuous stochastic process through the combined effects of systematic forces and random fluctuations. A few different FP models have been proposed to fulfill consistency with the Boltzmann equation, but a comprehensive comparative study is needed to assess their performance. The present paper investigates the accuracy and efficiency of four different FP models—Cubic-FP, ellipsoidal-statistical FP (ES-FP), and quadratic entropic FP (Quad-EFP)—under rarefied conditions. The numerical test cases include one-dimensional Couette and Fourier flows and an argon flow past a cylinder at supersonic and hypersonic velocities. It is found that the Quad-EFP model gives the best accuracy in low-Mach internal flows, whereas the ES-FP model performs best at predicting shock waves. In terms of numerical efficiency, the Linear-FP and ES-FP models run faster than the Cubic-FP and Quad-EFP models due to their simple algebraic nature. However, it is observed that the computational advantages of the FP models diminish as the spatiotemporal resolution becomes smaller than the collisional scales. In order to take advantage of their numerical efficiency, high-order joint velocity-position integration schemes need to be devised to ensure the accuracy of FP models with very coarse resolution.

Funder

National Research Foundation of Korea

National Supercomputing Center, Korea Institute of Science and Technology Information

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference58 articles.

1. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation;J. Stat. Phys.,1992

2. A direct simulation method for subsonic, microscale gas flows;J. Comput. Phys.,2002

3. A hybrid CFD-DSMC method of modeling continuum-rarefied flows,2004

4. The moment-guided Monte Carlo method;Int. J. Numer. Methods Fluids,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3