Numerical simulation of void elimination in the billet during hot shape rolling processes based on the Gurson–Tvergaard–Needleman model

Author:

Zhu Shuiwen12,Fu Yu3,Wu Shunxin2,Guo Shuangxi4ORCID

Affiliation:

1. School of Automotive Engineering, Hubei University of Automotive Technology 1 , Shiyan 442002, China

2. Hubei Key Laboratory of Automotive Power Transmission and Electronic Control 2 , Shiyan 442002, China

3. College of Civil Engineering and Architecture, Southwest University of Science and Technology 3 , Mianyang 621010, China

4. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences 4 , Guangzhou 510301, China

Abstract

The presence of voids can compromise the strength and continuity of downstream products. The Gurson–Tvergaard–Needleman model was utilized to obtain the relevant parameters. A 3D finite element model was then employed to investigate the elimination of voids in a porous free-cutting steel 1215MS during the hot shape rolling process. The center distribution of voids in the billet was considered in the finite element model, and the relationships between the void elimination and the pressure stress in the billet were analyzed. The influences of rolling reduction, rotation speed, and friction between the work roller and billet on the void elimination were also discussed. The results revealed that the pass reduction has a significant influence on the ultimate value of void volume fraction, which is beneficial for better material self-healing during the shape-rolling process. These findings suggest that accurate predictions of void elimination in the workpiece can be achieved using the finite element method for successful simulation of the hot shape rolling process.

Funder

The Doctoral Research Fund of the HUAT

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3