Design and application of pneumatic rehabilitation glove system based on brain–computer interface

Author:

Chen Cheng1ORCID,Song Yize1,Chen Duoyou1ORCID,Zhu Jiahua1,Ning Huansheng1ORCID,Xiao Ruoxiu12ORCID

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology Beijing 1 , Beijing 100083, China

2. Shunde Graduate School of University of Science and Technology Beijing 2 , Foshan 100024, China

Abstract

Stroke has been the second leading cause of death and disability worldwide. With the innovation of therapeutic schedules, its death rate has decreased significantly but still guides chronic movement disorders. Due to the lack of independent activities and minimum exercise standards, the traditional rehabilitation means of occupational therapy and constraint-induced movement therapy pose challenges in stroke patients with severe impairments. Therefore, specific and effective rehabilitation methods seek innovation. To address the overlooked limitation, we design a pneumatic rehabilitation glove system. Specially, we developed a pneumatic glove, which utilizes ElectroEncephaloGram (EEG) acquisition to gain the EEG signals. A proposed EEGTran model is inserted into the system to distinguish the specific motor imagination behavior, thus, the glove can perform specific activities according to the patient's imagination, facilitating the patients with severe movement disorders and promoting the rehabilitation technology. The experimental results show that the proposed EEGTrans reached an accuracy of 87.3% and outperformed that of competitors. It demonstrates that our pneumatic rehabilitation glove system contributes to the rehabilitation training of stroke patients.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3