Structural and dynamic properties of solvated hydroxide and hydronium ions in water from ab initio modeling

Author:

Liu Renxi12ORCID,Zhang Chunyi3ORCID,Liang Xinyuan12ORCID,Liu Jianchuan1ORCID,Wu Xifan34ORCID,Chen Mohan12ORCID

Affiliation:

1. HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, China

2. Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

3. Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA

4. Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA

Abstract

Predicting the asymmetric structure and dynamics of solvated hydroxide and hydronium in water from ab initio molecular dynamics (AIMD) has been a challenging task. The difficulty mainly comes from a lack of accurate and efficient exchange–correlation functional in elucidating the amphiphilic nature and the ubiquitous proton transfer behaviors of the two ions. By adopting the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation functional in AIMD simulations, we systematically examine the amphiphilic properties, the solvation structures, the electronic structures, and the dynamic properties of the two water ions. In particular, we compare these results to those predicted by the PBE0-TS functional, which is an accurate yet computationally more expensive exchange–correlation functional. We demonstrate that the general-purpose SCAN functional provides a reliable choice for describing the two water ions. Specifically, in the SCAN picture of water ions, the appearance of the fourth and fifth hydrogen bonds near hydroxide stabilizes the pot-like shape solvation structure and suppresses the structural diffusion, while the hydronium stably donates three hydrogen bonds to its neighbors. We apply a detailed analysis of the proton transfer mechanism of the two ions and find the two ions exhibit substantially different proton transfer patterns. Our AIMD simulations indicate that hydroxide diffuses more slowly than hydronium in water, which is consistent with the experimental results.

Funder

National Science Foundation of China

National Science Foundation

US Department of Energy

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3